The Measurement of the in situ compressional wave properties of marine sediments
نویسندگان
چکیده
Geoacoustic inversion requires a generic knowledge of the frequency-dependence of compressional wave properties in marine sediments, the nature of which is still under debate. The use of in situ probes to measure sediment acoustic properties introduces a number of experimental difficulties that must be overcome. To this end, a series of wellconstrained in situ acoustic transmission experiments were undertaken on inter-tidal sediments using a purpose-built in situ device, the Sediment Probing Acoustic Detection Equipment. Compressional wave velocity and attenuation coefficient were measured from 16 to 100 kHz in medium to fine sands and coarse to medium silts. Spreading losses, which were adjusted for sediment type, were incorporated into the data processing, as were a thorough error analysis and an examination of the repeatability of both the acoustic wave emitted by the source and the coupling between probes and sediment. Over the experimental frequency range and source-to-receiver separations of 0.99 – 8.1 m, resulting velocities are accurate to between + 1.1 to + 4.5 % in sands and less than + 1.9 % in silts, while attenuation coefficients are accurate to between + 1 to + 7 dB·m in both sands and silts. Preliminary results indicate no velocity dispersion and an attenuation coefficient which is proportional to frequency.
منابع مشابه
Compressional and shear wave properties of marine sediments: comparisons between theory and data.
According to a recently developed theory of wave propagation in marine sediments, the dispersion relationships for the phase speed and attenuation of the compressional and the shear wave depend on only three macroscopic physical variables: porosity, grain size, and depth in the sediment. The dispersion relations also involve three (real) parameters, assigned fixed values, representing microscop...
متن کاملTheory of compressional and shear waves in fluidlike marine sediments
An unconsolidated, saturated marine sediment consists of a more or less loose assemblage of mineral grains in contact, with seawater in the interstices. It is postulated that the two-phase medium possesses no skeletal frame, implying that the elastic rigidity modulus of the material is zero. A theory of wave propagation in such a sediment is developed, in which the medium is treated as a fluid ...
متن کاملThe Effect of Dynamic Permeability on Velocity and Intrinsic Attenuation of Compressional Waves in Sand
Stress waves contain useful information about the properties of porous materials; they can be recovered through different non-destructive testing methods such as crosswell, vertical seismic profile, borehole logging as well as sonic tests. In all these methods, it is crucial to assess the effects of frequency on wave attributes including velocity and intrinsic attenuation. The dependency of per...
متن کاملPrediction of shear and Compressional Wave Velocities from petrophysical data utilizing genetic algorithms technique: A case study in Hendijan and Abuzar fields located in Persian Gulf
Shear and Compressional Wave Velocities along with other Petrophysical Logs, are considered as upmost important data for Hydrocarbon reservoirs characterization. Shear Wave Velocity (Vs) in Well Logging is commonly measured by some sort of Dipole Logging Tools, which are able to acquire Shear Waves as well as Compressional Waves such as Sonic Scanner, DSI (Dipole Shear Sonic imager) by Schlumbe...
متن کاملAcoustic properties of coral sands, Waikiki, Hawaii
An in situ experimental study of variations of compressional wave speed and attenuation with depth in natural coral sands has been made offshore of Oahu, Hawaii. In situ data were collected at a center frequency of 7.5 kHz. Compressional wave speed averages around 1620 m/s and attenuation ~expressed as Qp , the reciprocal of the quality factor! decreases from 0.04 at the seafloor to 0.01 at 2 m...
متن کامل